Proof Search and Counter-Model Construction for Bi-intuitionistic Propositional Logic with Labelled Sequents
نویسندگان
چکیده
Bi-intuitionistic logic is a conservative extension of intuitionistic logic with a connective dual to implication, called exclusion. We present a sound and complete cut-free labelled sequent calculus for bi-intuitionistic propositional logic, BiInt, following S. Negri’s general method for devising sequent calculi for normal modal logics. Although it arises as a natural formalization of the Kripke semantics, it is does not directly support proof search. To describe a proof search procedure, we develop a more algorithmic version that also allows for counter-model extraction from a failed proof attempt.
منابع مشابه
An Interactive Prover for Bi-intuitionistic Logic
In this paper we present an interactive prover for deciding formulas in propositional bi-intuitionistic logic (BiInt). This tool is based on a recent connection-based characterization of bi-intuitionistic validity through bi-intuitionistic resource graphs (biRG). After giving the main concepts and principles we illustrate how to use this interactive proof or counter-model building assistant and...
متن کاملStructural Sharing and Efficient Proof-Search in Propositional Intuitionistic Logic
In this paper, we present a new system for proof-search in propositional intuitionistic logic from which an efficient implementation based on structural sharing is naturally derived. The way to solve the problem of formula duplication is not based on logical solutions but on an appropriate representation of sequents with a direct impact on sharing and therefore on the implementation. Then, the ...
متن کاملProof Theory and Proof Search of Bi-Intuitionistic and Tense Logic
In this thesis, we consider bi-intuitionistic logic and tense logic, as well as the combined bi-intuitionistic tense logic. Each of these logics contains a pair of dual connectives, for example, Rauszer’s bi-intuitionistic logic [100] contains intuitionistic implication and dual intuitionistic exclusion. The interaction between these dual connectives makes it non-trivial to develop a cut-free s...
متن کاملCut-elimination and proof-search for bi-intuitionistic logic using nested sequents
We propose a new sequent calculus for bi-intuitionistic logic which sits somewhere between display calculi and traditional sequent calculi by using nested sequents. Our calculus enjoys a simple (purely syntactic) cut-elimination proof as do display calculi. But it has an easily derivable variant calculus which is amenable to automated proof search as are (some) traditional sequent calculi. We f...
متن کاملTruth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009